Project Title	Funding	Institution	
Roles of Oxytocin and Vasopressin in Brain	\$1,866,157	National Institutes of Health	
Effects of Chronic Intranasal Oxytocin	\$1,105,938	University of California, Davis	
Identifying therapeutic targets for autism using Shank3-deficient mice	\$487,448	ICAHN SCHOOL OF MEDICINE AT MOUNT SINAI	
Prefrontal function in the Shank3-deficient rat: A first rat model for ASD	\$457,912	ICAHN SCHOOL OF MEDICINE AT MOUNT SINAI	
Functional analysis of the Schizophrenia and Autism Spectrum Disorder gene TCF4 i	\$457,500	LIEBER INSTITUTE, INC.	
Oxytocin Receptors and Social Behavior	\$440,363	Emory University	
Characterization of the Schizophrenia-associated 3q29 Deletion in Mouse	\$417,252	Emory University	
Mechanisms of circuit failure and treatments in patient-derived neurons in autism	\$406,250	BROWN UNIVERSITY	
Neurobiological Signatures of Social Dysfunction and Repetitive Behavior	\$400,710	NEW YORK STATE PSYCHIATRIC INSTITUTE	
Striatal synaptic Abnormalities in Models of Autism	\$397,500	UT SOUTHWESTERN MEDICAL CENTER	
Preclinical evaluation of NMDA receptor antagonists for treating Rett Syndrome	\$396,250	CASE WESTERN RESERVE UNIVERSITY	
THE GENETIC AND NEUROANATOMICAL ORIGIN OF SOCIAL BEHAVIOR	\$391,250	Baylor College of Medicine	
Mechanisms of stress-enhanced aversive conditioning	\$381,250	Northwestern University	
Formation and Function of Circuitry for Vocal Learning	\$361,456	University of California, Los Angeles	
Scalable technologies for genome engineering in hIPSCs	\$341,000	University of California, San Diego	
Novel Genetic Models of Autism	\$329,427	UT SOUTHWESTERN MEDICAL CENTER	
Linking cortical circuit dysfunction and abnormal behavior in genetic mouse models of autism	\$268,210	University of California, Los Angeles	
Neuroligin function in the prefrontal cortex and autism pathogenesis	\$250,000	Stanford University	
Understanding brain disorders related to the 15q11.2 chromosomal region	\$250,000	Johns Hopkins University	
The role of PTCHD1 in thalamic reticular nucleus function and ASD	\$250,000	Massachusetts Institute of Technology	
Molecular consequences of strong effect ASD mutations including 16p11.2	\$250,000	Massachusetts General Hospital	
Chromatin remodeling in autism	\$250,000	Stanford University	
Neural mechanisms of social reward in mouse models of autism	\$249,994	Stanford University	
Pre-clinical evaluation of oxytocin for ASD treatment discovery	\$244,898	University of California, Davis	
Disruption of Cortical Projection Neurons, Circuits, and Cognition in ASD	\$244,881	GEORGE WASHINGTON UNIVERSITY	
A novel neural circuit analysis paradigm to model autism in mice	\$238,500	Duke University	
Modeling The Serotonin Contribution to Autism Spectrum Disorders	\$227,339	Vanderbilt University	
16p11.2: Defining the gene(s) responsible (grant 1)	\$212,100	Cold Spring Harbor Laboratory	
A novel window into ASD through genetic targeting of striosomes - Core	\$170,040	Massachusetts Institute of Technology	
Optical imaging of circuit dynamics in autism models in virtual reality	\$165,691	Harvard University	
Targeting System Xc- for the treatment of the Autism Spectrum Disorder subpopulations, Fragile X syndrome and Phelan-McDermid syndrome	\$151,366	PROMENTIS PHARMACEUTICALS, INC.	
Functional Analysis of Rare Variants in Genes Associated with Autism	\$147,905	Yale University	

Project Title	Funding	Institution	
Detecting and Treating Social Impairments in a Monkey Model	\$146,468	Stanford University	
Characterization of brain and behavior in 7q11.23 duplication syndrome- Core	\$138,402	University of Toronto	
Understanding copy number variants associated with autism	\$125,000	Duke University	
In vivo approach to screen ASD allele functions in cortical interneurons	\$125,000	University of California, San Francisco	
Analysis of oxytocin function in brain circuits processing social cues	\$125,000	Harvard University	
Cellular models for autism de novo mutations using human stem cells	\$125,000	Broad Institute, Inc.	
CHD8 and beta-catenin signaling in autism	\$125,000	University of Chicago	
The Role of Cation/Proton Exchanger NHE9 in Autism	\$125,000	University of California, San Francisco	
Human Gene Editing and In Situ Sequencing of Neuronal Microcircuit Arrays	\$125,000	Harvard University	
How do autism-related mutations affect basal ganglia function?	\$125,000	University of California, Berkeley	
Uncovering the impact of 16p11.2del on neurons mediating motivated behavior	\$124,957	The Trustees of the University of Pennsylvania	
n Vivo Functional Analysis of Autism Candidate Genes	\$123,750	Baylor College of Medicine	
Safety, Efficacy and Basis of Oxytocin and Brain Stimulation Therapy in ASD	\$114,583	University of Pennsylvania	
Analysis of autism-associated alleles in C. elegans	\$108,061	California Institute of Technology	
Dissecting striatal circuit dynamics during repetitive behaviors in autism	\$107,254	FundaÁ,,o D. Anna de Sommer Champalimaud e Dr. Carlos Montez Champalimaud	
Top-down dynamics in autism	\$105,000	ROCKEFELLER UNIVERSITY	
Characterization of brain and behavior in 7q11.23 duplication syndrome- Project 1	\$103,684	University of California, Davis	
PsychoGenics Inc.	\$98,114	PsychoGenics Inc.	
A novel window into ASD through genetic targeting of striosomes - Project 1	\$77,447	Cold Spring Harbor Laboratory	
Stable Zebrafish Models of Autism Spectrum Disorder	\$75,250	University of Miami	
Comparison of cortical circuit dysfunction in ASD model mice	\$62,500	The Regents of the University of California, Berkeley	
Microcircuit endophenotypes for autism	\$62,500	University of California, San Francisco	
High-throughput drug discovery in zebrafish models of ASD risk genes	\$62,500	Yale University	
Biomarker discovery for low sociability: A monkey model	\$62,500	Stanford University	
A new non-human primate model for studying communicative behaviors	\$62,500	Johns Hopkins University	
Role of the hippocampal CA2 region in autism	\$62,500	Columbia University	
dentifying autism-associated signaling pathways regulated by CHD8 in vivo	\$62,500	King's College London	
Brain imaging of treatment response	\$62,167	The Hospital for Sick Children	
SCN2A mouse	\$60,000	Duke University	

Project Title	Funding	Institution	
Electrophysiological consequences of SCN2A mutations found in ASD	\$60,000	The Regents of the University of California, San Francisco (Contracts & Grants)	
Exploring VIPR2 microduplication linkages to autism in a mouse model	\$42,000	University of California, Los Angeles	
Studies of genetic and metabolic disorders, autism and premature aging	\$34,275	National Institutes of Health	
Investigations of a Proposed Molecular Feedback Loop in Cortical Neurons in Psychiatric Pathogenesis	\$25,000	University of California, San Francisco	
A Unified Molecular Mechanism Explaining Social Behavior and Oxytocin levels in ASD	\$25,000	Washington University in St. Louis	
Rebuilding Inhibition in the Autistic Brain	\$24,840	Brandeis University	
Pinpointing Genes Underlying Autism in Chromosomal Region 16p11.2	\$1,250	Cold Spring Harbor Laboratory	
Synaptic pathophysiology of 16p11.2 model mice	\$0	Massachusetts Institute of Technology	
Investigating Wnt signaling variants in mouse models of ASD	\$0	University of California, San Francisco	
16p11.2 deletion mice: autism-relevant phenotypes and treatment discovery	\$0	University of California, Davis	
Preclinical Autism Consortium for Therapeutics (PACT)	\$0	University of California, Davis	
Preclinical testing of novel oxytocin receptor activators in models of autism phenotypes	\$0	University of North Carolina	
Preclinical Autism Consortium for Therapeutics (PACT)- Boston Children's Hospital	\$0	Boston Children's Hospital	
The tissue-specific transcriptome anatomy of 16p11.2 microdeletion syndrome	\$0	Massachusetts General Hospital	
Testing brain overgrowth and synaptic models of autism using NPCs and neurons from patient-derived iPS cells	\$0	University of California, San Francisco	
Novel approaches to enhance social cognition by stimulating central oxytocin release	\$0	Emory University	
Testing brain overgrowth and synaptic models of autism using NPCs and neurons from patient-derived iPS cells	\$0	Salk Institute for Biological Studies	
Characterization of synaptic and neural circuitry dysfunction underlying ASD-like behaviors using a novel genetic mouse model	\$0	Duke University	
Role of Caspr2 (CNTNAP2) in brain circuits - Project 2	\$0	University of California, Los Angeles	
Preclinical testing of novel oxytocin receptor activators in models of autism phenotypes	\$0	University of North Carolina	
Preclinical testing of novel oxytocin receptor activators in models of autism phenotypes	\$0	University of North Carolina	
Role of Caspr2 (CNTNAP2) in brain circuits - Project 1	\$0	King's College London	
Role of Caspr2 (CNTNAP2) in brain circuits- Core	\$0	Weizmann Institute of Science	
Novel therapeutic targets to treat social behavior deficits in autism and related disorders	\$0	University of Texas San Antonio	
Examination of the mGluR-mTOR pathway for the identification of potential therapeutic targets to treat fragile X	\$0	University of Pennsylvania	

Project Title	Funding	Institution	
Behavioral evaluation of a novel autism mouse model	\$0	Shriners Hospitals for Children - Northern California	
Endocannabanoid Enhancement of Sociability in Autism-related Mouse Models	\$0	University of California, Irvine	
Deep Brain Stimulation for Autistic Self-Injurious Behavior	\$0	Johns Hopkins University	
Comprehensive Phenotyping of Autism Mouse Models	\$0	University of Pennsylvania	
A mouse model of top-down interactions	\$0	ROCKEFELLER UNIVERSITY	
Role of the CUL3-mediated ubiquitination pathway in autism	\$0	Portland State University	
Circuit-level developmental and functional dynamics in an ASD genetic model	\$0	Univeristy of Queensland	
Rapid drug discovery in genetic models of autism	\$0	Research Center of Centre hospitalier de l'UniversitÈ de MontrÈal	
Functional connectivity in monogenic mouse models of autism	\$0	Fondazione Istituto Italiano di Tecnologia	
A zebrafish model to identify epigenetic mechanisms relevant to autism	\$0	King's College London	